ASSEMBLY INSTRUCTIONS

FOR

1934 - 1948 EARLY FORD - DRUM SPINDLE*

*For additional vehicle compatibility, visit www.wilwood.com

FRONT SPINDLE HUB KIT
HEAVY DUTY, WITH 10.75” DIAMETER VENTED ROTOR

BASE PART NUMBER
140-1505

DISC BRAKES SHOULD ONLY BE INSTALLED BY SOMEONE EXPERIENCED AND COMPETENT IN THE INSTALLATION AND MAINTENANCE OF DISC BRAKES

READ ALL WARNINGS

WARNING
IT IS THE RESPONSIBILITY OF THE PERSON INSTALLING ANY BRAKE COMPONENT OR KIT TO DETERMINE THE SUITABILITY OF THE COMPONENT OR KIT FOR THAT PARTICULAR APPLICATION. IF YOU ARE NOT SURE HOW TO SAFELY USE THIS BRAKE COMPONENT OR KIT, YOU SHOULD NOT INSTALL OR USE IT. DO NOT ASSUME ANYTHING. IMPROPERLY INSTALLED OR MAINTAINED BRAKES ARE DANGEROUS. IF YOU ARE NOT SURE, GET HELP OR RETURN THE PRODUCT. YOU MAY OBTAIN ADDITIONAL INFORMATION AND TECHNICAL SUPPORT BY CALLING WILWOOD AT (805) 388-1188, OR VISIT OUR WEB SITE AT WWW.WILWOOD.COM. USE OF WILWOOD TECHNICAL SUPPORT DOES NOT GUARANTEE PROPER INSTALLATION. YOU, OR THE PERSON WHO DOES THE INSTALLATION MUST KNOW HOW TO PROPERLY USE THIS PRODUCT. IT IS NOT POSSIBLE OVER THE PHONE TO UNDERSTAND OR FORESEE ALL THE ISSUES THAT MIGHT ARISE IN YOUR INSTALLATION.

RACING EQUIPMENT AND BRAKES MUST BE MAINTAINED AND SHOULD BE CHECKED REGULARLY FOR FATIGUE, DAMAGE, AND WEAR.

Need Additional Information? Use Your Smartphone and Jump to Our Technical Tips Section on Our Web Site.

WARNING
DO NOT OPERATE ANY VEHICLE ON UNTESTED BRAKES!
SEE MINIMUM TEST PROCEDURE WITHIN
ALWAYS UTILIZE SAFETY RESTRAINT SYSTEMS AND ALL OTHER AVAILABLE SAFETY EQUIPMENT WHILE OPERATING THE VEHICLE

IMPORTANT • READ THE DISCLAIMER OF WARRANTY INCLUDED IN THE KIT

NOTE: Some cleaners may stain or remove the finish on brake system components. Test the cleaner on a hidden portion of the component before general use.
Important Notice - Read This First

Before any tear-down or disassembly begins, review the following information:
• Due to OEM production differences and other variations from vehicle to vehicle, the fastener hardware and other components in this kit may not be suitable for a specific application or vehicle.
• It is the responsibility of the purchaser and installer of this kit to verify suitability / fitment of all components and ensure all fasteners and hardware achieve complete and proper engagement. Improper or inadequate engagement can lead to component failure.

Photographic Tip

Important and highly recommended: Take photos of brake system before disassembly and during the disassembly process. In the event, trouble-shooting photos can be life savers. Many vehicles have undocumented variations, photos will make it much simpler for Wilwood to assist you if you have a problem.

Exploded Assembly Diagram

Figure 1. Typical Installation Configuration
General Information

Installation of this kit should **ONLY** be performed by persons experienced in the installation and proper operation of disc brake systems. Before assembling the Wilwood front disc brake hub kit, double check the following items to ensure a trouble-free installation.

- Make sure this is the correct kit to match the exact make and model year of the vehicles spindle (i.e., hubs for a 1940 Ford spindle will not fit a 1982 Ford spindle).

- Verify the hub stud pattern in this kit matches the stud pattern of the vehicles wheels.

- Inspect the package contents against the parts list to ensure that all components and hardware are included.

WARNING: The wheel contact surfaces **must** seat completely on the face of the hub. If any contact surfaces overhang the outside diameter of the hub face, a 6.60" diameter x .20" thick steel spacer (Wilwood P/N 300-11961, sold separately) **MUST** be used between the wheel and the hub.

- To prevent damage to the hub face, a 6.15" diameter x .09" thick hub shield (Wilwood P/N 300-10716, sold separately) should be used with any *stamped steel wheels* that do NOT overhang the outside diameter of the hub face.

- Always tighten lug nuts to the wheel manufacturer’s specifications.

- Always recheck the lug nuts after test driving the vehicle at safe speeds. If they are NOT still tight, inspect the wheel-to-hub contact surfaces for damage and/or incomplete contact.

- As routine maintenance, periodically remove the wheels and inspect the wheel-to-hub contact surfaces for damage.

- It is the installer’s responsibility to ensure that the wheels used with this hub kit are properly and securely installed. Some wheels may **NOT** be compatible with the hub in this kit.

Parts List

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230-2187</td>
<td>Stud, 1/2-20 x 1.75 Long, 12 Point</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>270-7279</td>
<td>Hub Assembly</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>370-1561</td>
<td>Cone, Inner Bearing</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>380-1562</td>
<td>Seal, Grease</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>300-3307</td>
<td>Adapter, Rotor</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>160-5839</td>
<td>Rotor, .81" Thk x 10.75" Dia, 6 x 6.25" Bolt Circle</td>
<td>2</td>
</tr>
<tr>
<td>6A</td>
<td>160-7097/98</td>
<td>Rotor, Drilled and Slotted (pair, one each, left and right)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>230-11934</td>
<td>Bolt, 5/16-18 x 0.75 Long, Torx Button Head</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>230-11239</td>
<td>Bolt, 3/8-16 x 1.0 Long, Torx Button Head</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>370-0877</td>
<td>Cone, Outer Bearing</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>240-2283</td>
<td>Washer, 3/4 Spindle</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>270-2158</td>
<td>Cap, Dust</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>211-1674</td>
<td>O-ring</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTES:
- Part Number 230-3829 Bolt Kit, adapter plate to hub, includes part number 230-11239
- Part Number 230-12121 Bolt Kit, rotor to adapter plate, includes part number 230-11934
- Item 6A is an optional item and included in the (D) drilled kits
Disassembly and Assembly Instructions

Disassembly Instructions:

• Disassemble the original equipment front brakes:

 Raise the front wheels off the ground and support the front suspension according to the vehicle manufacturer’s instructions.

 Remove the center cap, cotter pin, nut lock and the wheel bearing nut and washer. Save the wheel bearing nut and nut lock. Remove the brake drum and hub assembly, including the wheel bearings. Disconnect the brake hoses from the brake line at the body. Remove the two upper backing plate retaining nuts and bolts. Remove the two lower ball joint to spindle nuts and bolts. The backing plate, spindle and ball joint will now separate. Remove the brake backing plate and shoes as an assembly. Reinstall the front ball joint bolt and nut. Do not tighten at this time. Do not reinstall the rear bolt and nut.

Assembly Instructions (numbers in parenthesis refer to the part list/diagram on the preceding page): CAUTION: All mounting bolts must fully engage insert nuts. Be sure to check that all bolts are either flush or protruding through flanged side of insert nut after shimming.

• Clean and de-grease the spindles. Remove all nicks or burrs on the spindle snout and threads. Remove any of the backing plate gasket which may remain on the spindles. Remove any scale or rust from the gasket area.

• Install wheel studs (1) into the hub (2). Torque to 77 ft-lb. NOTE: There are two five lug patterns in the hub (5 x 4.50 and 5 x 4.75). Make sure of the correct hole pattern for the correct wheel application before installing studs into hub.

• Pack the large inner bearing cone (3) with high temperature disc brake bearing grease (available from your local auto parts store) and install into the backside of the hub (2).

• Install the grease seal (4) by pressing into the backside of the hub (2).

• Orient the rotor (6) and the rotor adapter (5) as shown in Figure 1. Attach the rotor to the adapter using bolts (7). Using an alternating sequence, apply red Loctite® 271 to the threads, and torque to 25 ft-lb.

• Mount the adapter/rotor assembly (5/6) to the hub (2) using bolts (8) (finger tight), as shown in Figure 1. Using an alternating sequence, remove bolts one at a time, apply red Loctite® 271 to the threads, and torque to 45 ft-lb.

• Pack the small outer bearing cone (9) with high temperature disc brake bearing grease and install into front of hub (2). Slide the hub/rotor assembly (2 and 6) with outer bearing cone (9) onto the spindle. Secure using spindle washer (10), stock adjusting nut and nut locking device. Adjust bearings per Original Equipment Manufacturer (OEM) specifications.

• Install the dust cap (11) onto the hub (2). Friction created by the o-ring (12) on the dust cap (11) keeps it from unscrewing. The O.D. of the spindle washer may be larger than the I.D. of the dust cap (11) not allowing it to seat against the hub face. Some grinding on the washer O.D. may be necessary to clear the I.D. of the dust cap (11).

• Complete the installation utilizing your caliper, brackets and necessary hardware/accessories, etc.
Please read the following concerning balancing the brake bias on 4 wheel disc vehicles.

OE Style or Single Mount Race Pedal with Tandem Outlet Master Cylinder:
Front to rear caliper piston sizes, rotor diameters, and pad compounds must be initially configured to provide the correct range of vehicle bias when using a single bore / tandem outlet master cylinder. If excessive rear brake bias is experienced, an inline adjustable proportioning valve can be used to decrease the rear line pressure to help bring the vehicle into balance. If excessive front brake bias is experienced, first consideration should be given to increasing the rear brake bias to bring the vehicle into overall balance.

Race Pedal with Dual Master Cylinders and Balance Bar:
Master cylinders must be sized to match the calipers and allow the pedal balance bar to operate near the center of its travel. If it is not possible to fine tune the bias within the adjustable range of the balance bar, then consideration must be given to changing a master cylinder bore size or some other aspect of the brake system to bring the car into balance. Larger bore master cylinders will generate less pressure while decreasing pedal travel. Smaller bores master cylinders will generate higher line pressures with an increase in pedal travel.

Fill and bleed the new system with Wilwood Hi-Temp° 570 grade fluid or higher. For severe braking or sustained high heat operation, use Wilwood EXP 600 Plus Racing Brake Fluid. Used fluid must be completely flushed from the system to prevent contamination. **NOTE:** Silicone DOT 5 brake fluid is **NOT** recommended for racing or performance driving.

To properly bleed the brake system, begin with the caliper farthest from the master cylinder. Bleed the outboard bleed screw first, then the inboard. Repeat the procedure until all calipers in the system are bled, ending with the caliper closest to the master cylinder. **NOTE:** When using a new master cylinder, it is important to bench bleed the master cylinder first.

If the master cylinder is mounted lower than the disc brake calipers, some fluid flowback to the master cylinder reservoir may occur, creating a vacuum effect that retracts the caliper pistons into the housing. This will cause the pedal to go to the floor on the first stroke until it has “pumped up” and moved all the pistons out against the pad again. A Wilwood in-line two pound residual pressure valve, installed near the master cylinder will stop the fluid flowback and keep the pedal firm and responsive.

Test the brake pedal. It should be firm, not spongy and stop at least 1 inch from the floor under heavy load.
If the brake pedal is spongy, bleed the system again.

If the brake pedal is initially firm, but then sinks to the floor, check the system for fluid leaks. Correct the leaks (if applicable) and then bleed the system again.

If the brake pedal goes to the floor and continued bleeding of the system does not correct the problem, a master cylinder with increased capacity (larger bore diameter) will be required. Wilwood offers various lightweight master cylinders with large fluid displacement capacities. **NOTE:** With the installation of after market disc brakes, the wheel track may change depending on the application. Check your wheel offset before final assembly.

On some models of disc brake spindles there are “ears” where the OEM calipers were mounted and these “ears” interfere with the assembly of the Wilwood disc brake kit. If it becomes necessary to remove these “ears”, remove as little as possible being careful not to cut away any of the mounting holes that may be required to bolt on the caliper mounting bracket.

If after following the instructions, you still have difficulty in assembling or bleeding your Wilwood disc brakes, consult your local chassis builder, or retailer where the kit was purchased for further assistance.
Brake Testing

WARNING • DO NOT DRIVE ON UNTESTESTED BRAKES
BRAKES MUST BE TESTED AFTER INSTALLATION OR MAINTENANCE
MINIMUM TEST PROCEDURE

- Make sure pedal is firm: Hold firm pressure on pedal for several minutes, it should remain in position without sinking. If pedal sinks toward floor, check system for fluid leaks. DO NOT drive vehicle if pedal does not stay firm or can be pushed to the floor with normal pressure.

- At very low speed (2-5 mph) apply brakes hard several times while turning steering from full left to full right, repeat several times. Remove the wheels and check that components are not touching, rubbing, or leaking.

- Carefully examine all brake components, brake lines, and fittings for leaks and interference.

- Make sure there is no interference with wheels or suspension components.

- Drive vehicle at low speed (15-20 mph) making moderate and hard stops. Brakes should feel normal and positive. Again check for leaks and interference.

- Always test vehicle in a safe place where there is no danger to (or from) other people or vehicles.

- Always wear seat belts and make use of all safety equipment.

Pad and Rotor Bedding

BEDDING STEPS FOR NEW PADS AND ROTORS – ALL COMPOUNDS

Once the brake system has been tested and determined safe to operate the vehicle, follow these steps for the bedding of all new pad materials and rotors. These procedures should only be performed on a race track, or other safe location where you can safely and legally obtain speeds up to 65 MPH, while also being able to rapidly decelerate.

- Begin with a series of light decelerations to gradually build some heat in the brakes. Use an on-and-off the pedal technique by applying the brakes for 3-5 seconds, and then allow them to fully release for a period roughly twice as long as the deceleration cycle. If you use a 5 count during the deceleration interval, use a 10 count during the release to allow the heat to sink into the pads and rotors.

- After several cycles of light stops to begin warming the brakes, proceed with a series of medium to firm deceleration stops to continue raising the temperature level in the brakes.

- Finish the bedding cycle with a series of 8-10 hard decelerations from 55-65 MPH down to 25 MPH while allowing a proportionate release and heat-sinking interval between each stop. The pads should now be providing positive and consistent response.

- If any amount of brake fade is observed during the bed-in cycle, immediately begin the cool down cycle.

- Drive at a moderate cruising speed, with the least amount of brake contact possible, until most of the heat has dissipated from the brakes. Avoid sitting stopped with the brake pedal depressed to hold the car in place during this time. Park the vehicle and allow the brakes to cool to ambient air temperature.

COMPETITION VEHICLES

- If your race car is equipped with brake cooling ducts, blocking them will allow the pads and rotors to warm up quicker and speed up the bedding process.

- Temperature indicating paint on the rotor and pad edges can provide valuable data regarding observed temperatures during the bedding process and subsequent on-track sessions. This information can be highly beneficial when evaluating pad compounds and cooling efficiencies.
Pad and Rotor Bedding (Continued)

POST-BEDDING INSPECTION – ALL VEHICLES
• After the bedding cycle, the rotors should exhibit a uniformly burnished finish across the entire contact face. Any surface irregularities that appear as smearing or splotching on the rotor faces can be an indication that the brakes were brought up to temperature too quickly during the bedding cycle. If the smear doesn’t blend away after the next run-in cycle, or if chatter under braking results, sanding or resurfacing the rotors will be required to restore a uniform surface for pad contact.

PRE-RACE WARM UP
• Always make every effort to get heat into the brakes prior to each event. Use an on-and-off the pedal practice to warm the brakes during the trip to the staging zone, during parade laps before the flag drops, and every other opportunity in an effort to build heat in the pads and rotors. This will help to ensure best consistency, performance, and durability from your brakes.

DYNO BEDDED COMPETITION PADS AND ROTORS
• Getting track time for a proper pad and rotor bedding session can be difficult. Wilwood offers factory dyno-bedded pads and rotors on many of our popular competition pads and Spec 37 GT series rotors. Dyno-bedded parts are ready to race on their first warm up cycle. This can save valuable time and effort when on-track time is either too valuable or not available at all. Dyno-bedding assures that your pads and rotors have been properly run-in and are ready to go. Contact your dealer or the factory for more information on Wilwood Dyno-Bedding services.

NOTE:
NEVER allow the contact surfaces of the pads or rotors to be contaminated with brake fluid. Always use a catch bottle with a hose to prevent fluid spill during all brake bleeding procedures.

Connect with Wilwood
Wilwood Facebook Wilwood Twitter Wilwood YouTube

Associated Components

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-13706</td>
<td>Wilwood Residual Pressure Valve (2 lb for disc brakes)</td>
</tr>
<tr>
<td>260-13707</td>
<td>Wilwood Residual Pressure Valve (10 lb for drum brakes)</td>
</tr>
<tr>
<td>260-8419</td>
<td>Wilwood Proportioning Valve, Knob Style</td>
</tr>
<tr>
<td>260-8420</td>
<td>Wilwood Proportioning Valve, Lever Style</td>
</tr>
<tr>
<td>260-11179</td>
<td>Wilwood Combination Proportioning Valve with Brake Light Switch</td>
</tr>
<tr>
<td>290-0632</td>
<td>Wilwood Racing Brake Fluid (Hi-Temp° 570) (12 oz)</td>
</tr>
<tr>
<td>290-6209</td>
<td>Wilwood Racing Brake Fluid (EXP 600 Plus) (16.9 oz)</td>
</tr>
<tr>
<td>340-13831</td>
<td>Wilwood Floor Mount Brake Pedal (with balance bar)</td>
</tr>
<tr>
<td>340-13832</td>
<td>Wilwood Swing Mount Brake Pedal (with balance bar)</td>
</tr>
<tr>
<td>260-6764</td>
<td>Wilwood 3/4 inch High Volume Aluminum Master Cylinder</td>
</tr>
<tr>
<td>260-6765</td>
<td>Wilwood 7/8 inch High Volume Aluminum Master Cylinder</td>
</tr>
<tr>
<td>260-6766</td>
<td>Wilwood 1 inch High Volume Aluminum Master Cylinder</td>
</tr>
<tr>
<td>260-4893</td>
<td>1-1/16 inch Tandem Master Cylinder (aluminum housing)</td>
</tr>
<tr>
<td>250-2406</td>
<td>Mounting Bracket Kit (tandem master cylinder)</td>
</tr>
<tr>
<td>260-8555</td>
<td>Wilwood 1 inch Aluminum Tandem Chamber Master Cylinder</td>
</tr>
<tr>
<td>260-8556</td>
<td>Wilwood 1-1/8 inch Aluminum Tandem Chamber Master Cylinder</td>
</tr>
<tr>
<td>220-7056</td>
<td>Flexline Kit, Universal, 14 Inch, Domestic</td>
</tr>
<tr>
<td>220-7699</td>
<td>Flexline Kit, Universal, 16 Inch, Domestic</td>
</tr>
<tr>
<td>220-8307</td>
<td>Flexline Kit, Universal, 18 Inch, Domestic</td>
</tr>
</tbody>
</table>