ASSEMBLY INSTRUCTIONS
FOR
OLDSMOBILE / PONTIAC WITH .68” STUDS*
*For additional vehicle compatibility, visit www.wilwood.com

DYNA PRO DYNAMIC MOUNT DRAG RACE REAR AXLE KIT
DUAL CALIPER, 11.44” DIAMETER DRILLED ROTOR (2.81 OFFSET)

BASE PART NUMBER
140-12556

DISC BRAKES SHOULD ONLY BE INSTALLED BY SOMEONE EXPERIENCED AND COMPETENT IN THE INSTALLATION AND MAINTENANCE OF DISC BRAKES

READ ALL WARNINGS

WARNING
IT IS THE RESPONSIBILITY OF THE PERSON INSTALLING ANY BRAKE COMPONENT OR KIT TO DETERMINE THE SUITABILITY OF THE COMPONENT OR KIT FOR THAT PARTICULAR APPLICATION. IF YOU ARE NOT SURE HOW TO SAFELY USE THIS BRAKE COMPONENT OR KIT, YOU SHOULD NOT INSTALL OR USE IT. DO NOT ASSUME ANYTHING. IMPROPERLY INSTALLED OR MAINTAINED BRAKES ARE DANGEROUS. IF YOU ARE NOT SURE, GET HELP OR RETURN THE PRODUCT. YOU MAY OBTAIN ADDITIONAL INFORMATION AND TECHNICAL SUPPORT BY CALLING WILWOOD AT (805) 388-1188, OR VISIT OUR WEB SITE AT WWW.WILWOOD.COM. USE OF WILWOOD TECHNICAL SUPPORT DOES NOT GUARANTEE PROPER INSTALLATION. YOU, OR THE PERSON WHO DOES THE INSTALLATION MUST KNOW HOW TO PROPERLY USE THIS PRODUCT. IT IS NOT POSSIBLE OVER THE PHONE TO UNDERSTAND OR FORESEE ALL THE ISSUES THAT MIGHT ARISE IN YOUR INSTALLATION.

RACING EQUIPMENT AND BRAKES MUST BE MAINTAINED AND SHOULD BE CHECKED REGULARLY FOR FATIGUE, DAMAGE, AND WEAR.

THIS DUAL CALIPER KIT CAN DRAMATICALLY INCREASE THE STOPPING PERFORMANCE OF YOUR RACE CAR. MAKE SEVERAL LOW SPEED TEST STOPS IN NON-RACE CONDITIONS, GRADUALLY INCREASING YOUR SPEED UNTIL YOU FAMILIARIZE YOURSELF WITH YOUR CAR’S NEW STOPPING CHARACTERISTICS.

WARNING
DO NOT OPERATE ANY VEHICLE ON UNTESTED BRAKES!
SEE MINIMUM TEST PROCEDURE WITHIN

ALWAYS UTILIZE SAFETY RESTRAINT SYSTEMS AND ALL OTHER AVAILABLE SAFETY EQUIPMENT WHILE OPERATING THE VEHICLE

IMPORTANT • READ THE DISCLAIMER OF WARRANTY INCLUDED IN THE KIT

NOTE: Some cleaners may stain or remove the finish on brake system components. Test the cleaner on a hidden portion of the component before general use.
Important Notice - Read This First

Before any tear-down or disassembly begins, review the following information:

- Review the Wheel Clearance Diagram (Figure 2, page 3) to verify that there is adequate clearance with the wheels you will be using with the installation.
- Verify the rear axle housing flange pattern, axle offset, and other critical measurements as outlined on page 3.
- This brake kit does not include flex lines. OEM brake lines will not adapt to Wilwood calipers. Check the assembly instructions, or associated components section for brake line recommendations before assembly.
 In addition, Wilwood offers an extensive listing of brake lines and fittings on our web site: www.wilwood.com.
- Due to OEM production differences and other variations from vehicle to vehicle, the fastener hardware and other components in this kit may not be suitable for a specific application or vehicle.
- It is the responsibility of the purchaser and installer of this kit to verify suitability / fitment of all components and ensure all fasteners and hardware achieve complete and proper engagement. Improper or inadequate engagement can lead to component failure.

Photographic Tip

Important and highly recommended: Take photos of brake system before disassembly and during the disassembly process. In the event, trouble-shooting photos can be life savers. Many vehicles have undocumented variations, photos will make it much simpler for Wilwood to assist you if you have a problem.

Exploded Assembly Diagram

Figure 1. Typical Installation Configuration
Installation of this kit should ONLY be performed by persons experienced in the installation and proper operation of disc brake systems. Before assembling the Wilwood rear axle disc brake kit, double check the following items to ensure a trouble-free installation.

- Make sure this is the correct kit to match the axle housing flange, not necessarily the rear end make. Many times aftermarket manufacturers put a different make of flange on the stock rear end housing (see Figure 6). Example; Big Ford rear ends with Olds-Pontiac flanges, therefore, an Olds-Pontiac rear disc brake kit would be the correct kit to order.

- Verify wheel clearance using Figure 2.

- Inspect the package contents against the parts list to ensure that all components and hardware are included.

- **Verify The Following Measurements Before Assembly.**
 - Bearing outside diameter (see Figure 6).
 - Housing flange mounting pattern to pattern in new bracket (see Figure 6).
 - Stud pattern on axle flange to hole pattern in new hat.
 - Offset dimension from wheel side of axle flange to wheel side of housing flange (see Figure 6, lower right hand corner). This dimension is critical to ensure proper alignment of the rotor to the caliper, and should match offset given in the kit description on the cover page.
 - Verify that the wheel axle stud size is 0.68” diameter. The Wilwood hats in this kit are drilled for 0.68” diameter wheel studs.
 - Maximum axle flange diameter must be no larger than 6.29” with a .050” x 45° chamfer (see Figure 3).

Disassembly Instructions:
- Disassemble the original equipment rear brakes:
 - Raise the rear wheels off the ground and support the rear suspension according to the vehicle manufacturer’s instructions.

Remove the rear wheels and completely disassemble the stock brake system down to the bare axle housing. Save the Original Equipment Manufacturer (OEM) housing flange bolts and nuts.

NOTES: Part Number 300-12561 Dynamic Mount Snap Ring Kit, includes part numbers 300-11931 and 310-11775
Part Number 230-0204 Caliper Mounting Bolt Kit, includes part numbers 230-0228, 240-10190 and 240-1159

General Information and Disassembly Instructions

Installation of this kit should ONLY be performed by persons experienced in the installation and proper operation of disc brake systems. Before assembling the Wilwood rear axle disc brake kit, double check the following items to ensure a trouble-free installation.

- Make sure this is the correct kit to match the axle housing flange, not necessarily the rear end make. Many times aftermarket manufacturers put a different make of flange on the stock rear end housing (see Figure 6). Example; Big Ford rear ends with Olds-Pontiac flanges, therefore, an Olds-Pontiac rear disc brake kit would be the correct kit to order.

- Verify wheel clearance using Figure 2.

- Inspect the package contents against the parts list to ensure that all components and hardware are included.

Verify The Following Measurements Before Assembly.
- Bearing outside diameter (see Figure 6).
- Housing flange mounting pattern to pattern in new bracket (see Figure 6).
- Stud pattern on axle flange to hole pattern in new hat.
- Offset dimension from wheel side of axle flange to wheel side of housing flange (see Figure 6, lower right hand corner). This dimension is critical to ensure proper alignment of the rotor to the caliper, and should match offset given in the kit description on the cover page.
- Verify that the wheel axle stud size is 0.68” diameter. The Wilwood hats in this kit are drilled for 0.68” diameter wheel studs.
- Maximum axle flange diameter must be no larger than 6.29” with a .050” x 45° chamfer (see Figure 3).

Disassembly Instructions:
- Disassemble the original equipment rear brakes:
 - Raise the rear wheels off the ground and support the rear suspension according to the vehicle manufacturer’s instructions.

Remove the rear wheels and completely disassemble the stock brake system down to the bare axle housing. Save the Original Equipment Manufacturer (OEM) housing flange bolts and nuts.

![Figure 2. Wheel Clearance Diagram](image-url)

![Figure 3. Axle Flange Maximum Dimension](image-url)
Disassembly (Continued) and Assembly Instructions

Remove any nicks or burrs on the housing flange and axle flange that may interfere with the installation of the new brake components.

Remove the stock bearing retainers from the axles.

- Clean and de-grease the housing flange, axle flange, and saved components.

Assembly Instructions (numbers in parenthesis refer to the parts list and Figure 1 on the preceding pages): **CAUTION:** *All mounting bolts must fully engage clinch nuts.* Be sure to check that all bolts are either flush or protruding through flanged side of clinch nut after shimming, Figure 5.

- Reinstall the axle into the axle housing.

- Install the caliper mounting bracket (1), with the slot for the axle pointing upward, to the housing flange using the OEM bolts and nuts, as shown in Figure 1 and Photo 1. Ensure that the caliper mounting ears on the bracket are oriented fore and aft on the car, with the heads of the clinch nuts facing outboard, Photo 1. Apply red *Loctite*® 271 to the OEM bolt threads and torque to OEM specifications.

- Insert the dynamic mount wear plates (4) into the slots in the hat (2) making sure the tabs snap in place, Photo 2. Orient the rotor (3) as shown in Figure 1 and Photo 3, with the flush mount tab side facing the hat. Attach the rotor to the hat using snap ring (5) by pushing down on the rotor and installing the ring into the groove in the hat, as shown in Photo 4. Ensure that the ring is fully engaged in the groove.

- Align the correct hole pattern in the hat (2) with the axle stud pattern and slide the hat/rotor assembly onto the axle hub. **NOTE:** *The hat must fit flush against the axle flange or excessive rotor run out may result.* Install three lug nuts (finger tight) to keep the hat/rotor in place while continuing with the installation. **NOTE:** *The hats included in this brake kit are drilled for .68” diameter wheel studs.*

- **NOTE:** Please reference the caution statement at the beginning of the assembly instructions. Mount one caliper (6) onto the mounting bracket (1) using bolts (8) and washers (7), as shown in Figure 1. Initially place two .035” thick shims (9) on each bolt between the caliper and the bracket, Photo 5. Temporarily tighten the mounting bolts and view the rotor (3) through the top opening of caliper. The rotor should be centered in the caliper, Photo 6. If not, adjust the caliper by adding or subtracting shims between the bracket and the caliper. Always use the same amount of shims on each of the two mounting bolts. **NOTE:** *The end of each bolt must be flush with or slightly protruding from the head of the clinch nut.* If necessary, place spare shims between washer and caliper mounting ear to achieve the proper clinch nut engagement, as shown in Figure 5.
Once the caliper alignment and clinch nut engagement are correct, remove the bolts one at a time, apply red Loctite® 271 to the threads, and torque to 40 ft-lb. For an added measure of security, the bolts may be safety wired using standard 0.032 inch diameter stainless steel safety wire as shown in Figure 4. Please refer to Wilwood’s data sheet DS-386 (available at www.wilwood.com/Pdf/DataSheets/ds386.pdf) for complete safety wire installation instructions. Repeat this procedure for the second caliper.

• Install the disc brake pads (10) into the calipers, with the friction material facing the rotor, and secure in place with the pad clip retainer (11), Photo 7.

• Temporarily install the wheel and torque lug nuts to manufacturer's specification. Ensure that the wheel rotates freely without any interference.

• NOTE: OEM rubber brake hoses generally cannot be adapted to Wilwood calipers. The caliper inlet fitting is a 1/8-27 NPT. The preferred method is to use steel adapter fittings at the caliper, either straight, 45 or 90 degree (use PTFE tape on pipe threads for proper sealing to caliper) and enough steel braided line to allow for full suspension travel. Carefully route lines to prevent contact with moving suspension, brake or wheel components. NOTE: Wilwood hose kits are designed for use in many different vehicle applications and it is the installer’s responsibility to properly route and ensure adequate clearance and retention for brake hose components.

• Specified brake hose kits may not work with all Years, Makes and Models of vehicle that this brake kit is applicable to, due to possible OEM manufacturing changes during a production vehicle’s life. It is the installer’s responsibility to ensure that all fittings and hoses are the correct size and length, to ensure proper sealing and that they will not be subject to crimping, strain and abrasion from vibration or interference with suspension components, brake rotor or wheel.

• In absence of specific instructions for brake line routing, the installer must use his best professional judgment on correct routing and retention of lines to ensure safe operation. Test vehicle brake system per the ‘minimum test’ procedure stated within this document before driving. After road testing, inspect for leaks and interference. Initially after install and testing, perform frequent checks of the vehicle brake system and lines before driving, to confirm that there is no undue wear or interference not apparent from the initial test. Afterwards, perform periodic inspections for function, leaks and wear in a interval relative to the usage of vehicle.

• Bleed the brake system, referring to the additional the information and recommendations on page 7 for proper bleeding instructions. Check system for leaks after bleeding.

• Install the wheel and torque lug nuts to manufacturer’s specifications.

• Bed-in the brake pads per the procedure on page 8.
<table>
<thead>
<tr>
<th>Model</th>
<th>Bolt Holes Center to Center - Horizontal</th>
<th>Bolt Holes Center to Center - Vertical</th>
<th>Center Register Diameter</th>
<th>Stud Diameter (Largest Diameter Facing Out)</th>
<th>Axle Offset</th>
<th>Flange Registration Diameter (If Applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Ford</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Big Ford-New Style (Torino)</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Small Ford</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>7-1/4" Ford (4-Lug)</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>8.8" Ford</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>8.8" Ford Explorer</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Big Ford-Bronco</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Big Ford New Style-Bronco (5 x 5.50" Wheel Pattern)</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Small Ford-Bronco</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>8.8" Ford (Special)</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>10 / 12 Bolt Chevy</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>12 Bolt Chevy C-Clip Eliminator</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Chevy C10</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Chevy 510 7-5/8</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Chevy (Special)</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>Olds Pontiac</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
<tr>
<td>AMC</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 3.150 Bearing</td>
<td>Ø 2.835 Bearing</td>
<td>Ø 3.150 Bearing (1955/56)</td>
<td>Ø 2.975 Bearing</td>
<td>Ø 2.975 Bearing (1955/56)</td>
</tr>
</tbody>
</table>

Figure 6. Rear Housing Flange Chart and Axle Flange / Offset Cross-Section
Balancing the Brake Bias on 4 Wheel Disc Vehicles

• **OE Style or Single Mount Race Pedal with Tandem Outlet Master Cylinder:**
 Front to rear caliper piston sizes, rotor diameters, and pad compounds must be initially configured to provide the correct range of vehicle bias when using a single bore / tandem outlet master cylinder. If excessive rear brake bias is experienced, an inline adjustable proportioning valve can be used to decrease the rear line pressure to help bring the vehicle into balance. If excessive front brake bias is experienced, first consideration should be given to increasing the rear brake bias to bring the vehicle into overall balance.

• **Race Pedal with Dual Master Cylinders and Balance Bar:**
 Master cylinders must be sized to match the calipers and allow the pedal balance bar to operate near the center of its travel. If it is not possible to fine tune the bias within the adjustable range of the balance bar, then consideration must be given to changing a master cylinder bore size or some other aspect of the brake system to bring the car into balance. Larger bore master cylinders will generate less pressure while decreasing pedal travel. Smaller bores master cylinders will generate higher line pressures with an increase in pedal travel.

Additional Information and Recommendations

• *Fill and bleed the new system with Wilwood Hi-Temp® 570 grade fluid or higher. For severe braking or sustained high heat operation, use Wilwood EXP 600 Plus Racing Brake Fluid. Used fluid must be completely flushed from the system to prevent contamination.*

 NOTE: Silicone DOT 5 brake fluid is **NOT** recommended for racing or performance driving.

• To properly bleed the brake system, begin with the caliper farthest from the master cylinder. Bleed the outboard bleed screw first, then the inboard. Repeat the procedure until all calipers in the system are bled, ending with the caliper closest to the master cylinder.

 NOTE: When using a new master cylinder, it is important to bench bleed the master cylinder first.

• If the master cylinder is mounted lower than the disc brake calipers, some fluid flowback to the master cylinder reservoir may occur, creating a vacuum effect that retracts the caliper pistons into the housing. This will cause the pedal to go to the floor on the first stroke until it has “pumped up” and moved all the pistons out against the pad again. A Wilwood in-line two pound residual pressure valve, installed near the master cylinder will stop the fluid flowback and keep the pedal firm and responsive.

• Test the brake pedal. It should be firm, not spongy and stop at least 1 inch from the floor under heavy load.

 If the brake pedal is spongy, bleed the system again.

 If the brake pedal is initially firm, but then sinks to the floor, check the system for fluid leaks. Correct the leaks (if applicable) and then bleed the system again.

 If the brake pedal goes to the floor and continued bleeding of the system does not correct the problem, a master cylinder with increased capacity (larger bore diameter) will be required. Wilwood offers various lightweight master cylinders with large fluid displacement capacities.

 NOTE: With the installation of after market disc brakes, the wheel track may change depending on the application. Check your wheel offset before final assembly.

• If after following the instructions, you still have difficulty in assembling or bleeding your Wilwood disc brakes, consult your local chassis builder, or retailer where the kit was purchased for further assistance.
Pad and Rotor Bedding

BEDDING STEPS FOR NEW PADS AND ROTORS – ALL COMPOUNDS

Once the brake system has been tested and determined safe to operate the vehicle, follow these steps for the bedding of all new pad materials and rotors. These procedures should only be performed on a race track, or other safe location where you can safely and legally obtain speeds up to 65 MPH, while also being able to rapidly decelerate.

• Begin with a series of light decelerations to gradually build some heat in the brakes. Use an on-and-off the pedal technique by applying the brakes for 3-5 seconds, and then allow them to fully release for a period roughly twice as long as the deceleration cycle. If you use a 5 count during the deceleration interval, use a 10 count during the release to allow the heat to sink into the pads and rotors.

• After several cycles of light stops to begin warming the brakes, proceed with a series of medium to firm deceleration stops to continue raising the temperature level in the brakes.

• Finish the bedding cycle with a series of 8-10 hard decelerations from 55-65 MPH down to 25 MPH while allowing a proportionate release and heat-sinking interval between each stop. The pads should now be providing positive and consistent response.

• If any amount of brake fade is observed during the bed-in cycle, immediately begin the cool down cycle.

• Drive vehicle at low speed (15-20 mph) making moderate and hard stops. Brakes should feel normal and positive. Again check for leaks and interference.

• Always test vehicle in a safe place where there is no danger to (or from) other people or vehicles.

• Always wear seat belts and make use of all safety equipment.

COMPETITION VEHICLES

• If your race car is equipped with brake cooling ducts, blocking them will allow the pads and rotors to warm up quicker and speed up the bedding process.

• Temperature indicating paint on the rotor and pad edges can provide valuable data regarding observed temperatures during the bedding process and subsequent on-track sessions. This information can be highly beneficial when evaluating pad compounds and cooling efficiencies.

Brake Testing

WARNING • DO NOT DRIVE ON UNTESTED BRAKES
BRAKES MUST BE TESTED AFTER INSTALLATION OR MAINTENANCE
MINIMUM TEST PROCEDURE

• Make sure pedal is firm: Hold firm pressure on pedal for several minutes, it should remain in position without sinking. If pedal sinks toward floor, check system for fluid leaks. DO NOT drive vehicle if pedal does not stay firm or can be pushed to the floor with normal pressure.

• At very low speed (2-5 mph) apply brakes hard several times while turning steering from full left to full right, repeat several times. Remove the wheels and check that components are not touching, rubbing, or leaking.

• Carefully examine all brake components, brake lines, and fittings for leaks and interference.

• Make sure there is no interference with wheels or suspension components.

• Drive vehicle at low speed (15-20 mph) making moderate and hard stops. Brakes should feel normal and positive. Again check for leaks and interference.

• Always test vehicle in a safe place where there is no danger to (or from) other people or vehicles.

• Always wear seat belts and make use of all safety equipment.
Pad and Rotor Bedding (Continued)

POST-BEDDING INSPECTION – ALL VEHICLES
• After the bedding cycle, the rotors should exhibit a uniformly burnished finish across the entire contact face. Any surface irregularities that appear as smearing or splotching on the rotor faces can be an indication that the brakes were brought up to temperature too quickly during the bedding cycle. If the smear doesn’t blend away after the next run-in cycle, or if chatter under braking results, sanding or resurfacing the rotors will be required to restore a uniform surface for pad contact.

PRE-RACE WARM UP
• Always make every effort to get heat into the brakes prior to each event. Use an on-and-off the pedal practice to warm the brakes during the trip to the staging zone, during parade laps before the flag drops, and every other opportunity in an effort to build heat in the pads and rotors. This will help to ensure best consistency, performance, and durability from your brakes.

DYNO BEDDED COMPETITION PADS AND ROTORS
• Getting track time for a proper pad and rotor bedding session can be difficult. Wilwood offers factory dyno-bedded pads and rotors on many of our popular competition pads and Spec 37 GT series rotors. Dyno-bedded parts are ready to race on their first warm up cycle. This can save valuable time and effort when on-track time is either too valuable or not available at all. Dyno-bedding assures that your pads and rotors have been properly run-in and are ready to go. Contact your dealer or the factory for more information on Wilwood Dyno-Bedding services.

NOTE: NEVER allow the contact surfaces of the pads or rotors to be contaminated with brake fluid. Always use a catch bottle with a hose to prevent fluid spill during all brake bleeding procedures.

Connect with Wilwood

Wilwood Facebook
Wilwood Instagram
Wilwood Twitter
Wilwood YouTube

Associated Components

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-13706</td>
<td>Wilwood Residual Pressure Valve (2 lb for disc brakes)</td>
</tr>
<tr>
<td>260-13707</td>
<td>Wilwood Residual Pressure Valve (10 lb for drum brakes)</td>
</tr>
<tr>
<td>260-8419</td>
<td>Wilwood Proportioning Valve, Knob Style</td>
</tr>
<tr>
<td>260-8420</td>
<td>Wilwood Proportioning Valve, Lever Style</td>
</tr>
<tr>
<td>260-11179</td>
<td>Wilwood Combination Proportioning Valve with Brake Light Switch</td>
</tr>
<tr>
<td>290-0632</td>
<td>Wilwood Racing Brake Fluid (Hi-Temp° 570) (12 oz)</td>
</tr>
<tr>
<td>290-6209</td>
<td>Wilwood Racing Brake Fluid (EXP 600 Plus) (16.9 oz)</td>
</tr>
<tr>
<td>340-13831</td>
<td>Wilwood Floor Mount Brake Pedal (with balance bar)</td>
</tr>
<tr>
<td>340-13832</td>
<td>Wilwood Swing Mount Brake Pedal (with balance bar)</td>
</tr>
<tr>
<td>260-8555</td>
<td>Wilwood 1 inch Aluminum Tandem Chamber Master Cylinder</td>
</tr>
<tr>
<td>260-8556</td>
<td>Wilwood 1-1/8 inch Aluminum Tandem Chamber Master Cylinder</td>
</tr>
<tr>
<td>150-9418K</td>
<td>BP-20 Street Performance / Racing Brake Pads • Baseline Pad for Track Oriented Street Cars</td>
</tr>
<tr>
<td>150-12247K</td>
<td>BP-40 High Temperature Racing Brake Pads • Race Only Pad for Severe Duty Oval, Road Course, or Off-Road</td>
</tr>
<tr>
<td>220-7056</td>
<td>Stainless Steel Braided Flexline Kit, Universal, 14 Inch, Domestic, 3/8-24 IF</td>
</tr>
<tr>
<td>220-7699</td>
<td>Stainless Steel Braided Flexline Kit, Universal, 16 Inch, Domestic, 3/8-24 IF</td>
</tr>
<tr>
<td>220-8307</td>
<td>Stainless Steel Braided Flexline Kit, Universal, 18 Inch, Domestic, 3/8-24 IF</td>
</tr>
<tr>
<td>330-9371</td>
<td>Cable Kit, Parking Brake, Universal</td>
</tr>
</tbody>
</table>